Open Water Information Architecture Standard Operating Procedures

1

2

3

4

John J. Helly

March 19, 2020

Contents

6	1	The	Open Water Information Architecture (OWIA)	11								
7		1.1	Concept of Operations	12								
8		1.2	Overview of Standard Operating Procedure (SOP) Processing Workflow	15								
9		1.3	Related Procedural Examples from Software Development									
10	2	Stan	dard Operating Procedures (SOPs)	19								
11		2.1	Groundwater Level Data Reporting by GSA	19								
12			2.1.1 Use-case Definition	19								
13			2.1.2 Technical Requirements	20								
14			2.1.2.1 Public Key Authentication and Content Encryption	20								
15			2.1.3 Implementation	20								
16			2.1.4 Action Items	20								
17		2.2	Water Balance Automation	21								
18			2.2.1 Contributors	21								
19			2.2.2 Governing Equations	21								
20			2.2.3 Computer Configuration	21								
21			2.2.4 Preparing the Directory Layout	21								
22			2.2.5 GR-1000: Procedure for Extracting Hydrologic Region, Planning Area and DAUCO									
23			Data with Georeferencing from DWR Shape Files	24								
24			2.2.6 QC-1000: Procedure for Transforming Spreadsheets to Comma-separated Value									
25			(*.csv) Files	24								
26			2.2.6.1 API-1000: WaDE Application Programming Interface	28								
27		2.3	Water District Reporting Cost Reduction	30								
28		2.4	Water Budget	30								
29		2.5	Water Quality	30								
30		2.6	Environment	30								
31	3	Nun	nerical Methods	31								
32		3.1	Analysis of Uncertainty	31								
33		3.2	Accuracy and Precision	31								
34			3.2.1 Significant Digits	31								
35		3.3	Propagation of Uncertainty in Calculations	31								
36		3.4	Uncertainty in Estimates from Numerical Models	31								
37			3.4.1 Verification and Validation	31								
38			3.4.1.1 Irreproducible Results Across Computing Platforms	31								
39			3.4.2 Statistics from Ensembles	31								

40	4	Tost	od Do	scription	33
40	Ξ.	4 1	Introd		33
41		4.1 4.2	Conce	nt of Operations	33
42		4.3	Projec	t Management Plan	33
43		4.5	431	Project Charter	33
44			4.5.1	4 3 1 1 Objective	33
45				4312 Scope	33
40				4 3 1 3 Deliverables	34
48				4 3 1 4 Schedule	34
40			432	Governance Structure	34
50			433	Technical Baseline	34
51			1.5.5	4 3 3 1 Initial Operating Capability (IOC) Definition	34
52				4.3.3.2 Full Operating Capability (FOC) Definition	34
53			4.3.4	Measures of Success	34
54		4.4	Delive	rables Details	35
55			4.4.1	Use-case Implementations	35
56				4.4.1.1 Water Balance	35
57				4.4.1.1.1 WaDE Integration: WY2010-2015	35
58				4.4.1.2 Water Budget	37
59				4.4.1.2.1 South Coast Hydrologic Region: (PA404, DAU12037), San Diego	
60				County Water Authority Urban Water Management Plan (UWMP)	37
61				4.4.1.2.2 Tulare Lake	37
62				4.4.1.2.3 Central Coast	37
63				4.4.1.3 Water Quality	37
64				4.4.1.4 Environmental	37
65			4.4.2	Data Node Descriptions	37
66				4.4.2.1 CKAN	38
67				4.4.2.2 DKAN	38
68				4.4.2.3 California Coastal Atlas (CCA)	38
69			4.4.3	Document Maintenance	38
70				4.4.3.1 SRD	38
71				4.4.3.2 SOP	38
72	Aj	ppendi	ix A V	Vater Balance SOP Example Implementation: QC-1000.R	39
73	Aj	ppendi	ix B C	OWIA Technical Working Group Action Items	49
74	Aı	opendi	ix C A	Application to AB1755	51
75		C.1	Applic	cation-AB1755: OWIA application to AB1755 objectives	51

76 List of Figures

77	1.1	Technical baseline documents and their relationship to OWIA data node implementations.	12
78	1.2	Illustration of the OWIA federation <i>concept-of-operations</i> with a triumvirate governance	
79		structure of general partners (GP) supported by interacting with a stakeholder working group	
80		(SWG) and a technical working group (TWG). The federation is comprised of dedicated	
81		OWIA system implementations to enable individual data providers to independently inte-	
82		grate the OWIA into their existing operations. Shared OWIA system implementations pro-	
83		vide the flexibility for the harvesting non-compliant data sources without insisting that the	
84		data producers be OWIA-compliant.	13
85	1.3	Open Water Data Information Architecture (OWIA) framework.	14
86	1.4	Operational workflow for quality control and data publication. Groundwater data is the	
87		application example in this figure.	16
88	2.1	Testbed implementation.	19
89	2.2	Example directory organization. Note that the organization has been factored so that the	
90		paths are relative to the PROJECT_HOME which would typically change from computer to	
91		computer	22
92	2.3	Tree diagram of data directory corresponding to the directory layout in Figure 2.2	23
93	2.4	Quality control workflow for water balance automation. For this problem, regional data	
94		were integrated into a Level 2 (multiple Level 1 datasets) before quality control was applied	
95		to enable anomaly detection across the state-level dataset	24
96	2.5	Overview of geospatial metadata extraction (GS), quality control (QC), configuration man-	
97		agement and change control (CM), data publication (DP) and application programming in-	
98		terfaces (API) for water balance data.	26
99	2.6	Wade SQL Query for PA101-2015.	28
100	2.7	Wade SQL Query for PA101-2015	29
101	4.1	Preliminary schedule.	34
102	4.2	Workflow for California Plan WY2010-2015 example.	35
103	4.3	Workflow for UWMP use-case with the San Diego County Water Authority example	37

List of Tables

105 106	1.1	Overview of standard operating procedures (SOPs) and categorization into quality control (QC), data publication (DP) and analysis (AN) procedures.	17
107	2.1	SOPs applied to water balance data with verification products described	26
108 109	4.1 4.2	IOC definition regarding problem definition, methodology and measures of success Information product example for California Plan WY2010-2015 (Working Draft)	35 36
110	A.1	Input-Table-CV-Parameterization.tex	43
111	C .1	Traceability of AB1755 objectives (columns) to OWIA functional requirements (rows)	52

112 Listings

113 Chapter 1

The Open Water Information Architecture(OWIA)

An *information architecture* is a means of *mobilizing information to satisfy a set of objectives*. This means that an information architecture has a purpose and a focus. It may be as broad as to provide an archive for the preservation of all published materials, such as the university and public library systems, or it may be as narrow as providing decision-support for the water resource management of California. The OWIA addresses the water resource management problem with proven methods, conventional to information sciences community, using modern cyberinfrastructure and computing methods.

This paper discusses the OWIA both from an objectives perspective, from the top-down, as well as a bottom-up requirements baseline as a framework to provide high quality, digital information products for water resource management in perpetuity. The reader is encouraged to think of what ensues in this paper as being about data, not computers. This is important because whatever underlying cyberinfrastructure is in use at any particular time to implement the OWIA, the cyberinfrastructure changes rapidly with respect to the specification of the information products which change relatively slowly. The OWIA must be robust to technology changes if it is to be long-lived and sustainable.

By translating the objectives, currently realized as Stakeholder Use-cases, into functional and technical requirements, in the form of a System Requirements Document (SRD), with an accompanying set of standard operating procedures (SOPs), we provide a means to control *cost, schedule, technical and operational risk.* At the same time, providing project managers (a) a basis for measuring the performance of system(s) built to satisfy the objectives and to (b) compare the relative merit of alternative designs, a (c) rational path for technology updates over time, and a (d) framework for controlling the long-term operations and maintenance costs.

The Open Water Information Architecture (OWIA) does these things for the community of stakeholders 136 with an interest in water resources and open-data. The OWIA establishes a federation of peer data systems 137 sharing standards and conventions to govern cyberinfrastructure, data and operations. It is a system of 138 systems allowing organizations and individuals to leverage existing investments in staff and data systems 139 while providing a means for interoperability and cooperation. Some of the benefits of the OWIA approach 140 are (i) greater access to standardized data in (ii) an *open-system* providing for (iii) growth in data holdings, 141 (iv) flexible integration of changing technology and innovation, (v) responsiveness to emergent stakeholder 142 objectives with (vi) an elimination of stranded assets. 143

Figure 1.1: Technical baseline documents and their relationship to OWIA data node implementations.

144 1.1 Concept of Operations

This document contains the functional and technical requirements for the Open Water Information Architec-145 ture (OWIA) and is called the OWIA System Requirements Document (SRD). It has within it an Appendix:?? 146 Standards and Conventions that contains narrative explanations that are referred to within individual re-147 quirements where appropriate. This is done because the requirements are meant to be terse, declarative, 148 testable statements that are not overloaded with narrative exposition. There are two companion documents 149 to the SRD: (1) the subordinate document OWIA Standard Operating Procedures (SOPs) and the (2) parent 150 document California Council for Science and Technology (CCST) Stakeholder Use Case document. 151 The SOPs are compliant with the requirements specified here yet written at a more detailed level of ab-152

straction with examples of programming code or sometimes pseudo-code to exemplify the implementation 153 details important to developers as well as precisely documenting the processing steps (i.e., procedures) used 154 to operate on data. It is meant to be analogous to an OWIA Programmer's Guide and, as the OWIA imple-155 mentation proceeds, there will be open-source code repositories with *minimal working examples (MWE)* for 156 use in improvements and innovations to current procedures and applications implementing those procedures. 157 Each of these documents is intended for a technical audience although it is hoped that they are compre-158 hensible to a motivated non-technical reader. There is a glossary in the back of the SRD to aid in navigating 159 the technical language and as an effort to disambiguate some of the terms for which there may be competing 160 and inconsistent definitions. In addition to these two, there is a third document that contains the stakeholder 161

Figure 1.2: Illustration of the OWIA federation *concept-of-operations* with a triumvirate governance structure of general partners (GP) supported by interacting with a stakeholder working group (SWG) and a technical working group (TWG). The federation is comprised of dedicated OWIA system implementations to enable individual data providers to independently integrate the OWIA into their existing operations. Shared OWIA system implementations provide the flexibility for the harvesting non-compliant data sources without insisting that the data producers be OWIA-compliant.

use cases used to develop the stakeholder objectives from each use case. These objectives are being used to 162 define and constrain the requirements contained in the SRD and the procedures for satisfying them defined 163 in the SOPs. 164

The SRD and SOPs are designed to provide a foundation for a community-based OWIA development 165 of a federated set of cyberinfrastructure resources (i.e., computers, networks, data, metadata, and standards 166 and conventions) that are interoperable and highly-automated to minimize labor as well as idiosyncratic 167 anomalies. We therefore refer to them as the *baseline documents* (Figure 1.1). The objective of these 168 baseline documents is to establish a framework for sustainable water resource management and to formalize 169 that framework to a degree exemplified by other systems of standard methods such as those found in [6]. 170

The federated nature of the OWIA extends to its (1) human governance structure as well as its (2) cyber-171

infrastructure (cf. Section ?? and Figure 1.2). Therefore we speak of the OWIA federation as including both 172

these aspects and will differentiate the two parts contextually when using the term. The open aspect means 173

open-access, open-source and open-architecture: encouraging innovation and automation while precluding 174

the siloing and stove-piping that occurs when proprietary software and systems pose restrictive technology 175

dependencies and requirements. The planning horizon is open-ended although intended to provide for a 176

near-term operational system with an initial operating capability (IOC) within 1-2 years evolving to a final 177 operating capability (FOC) over five (5) years that is operationally sustainable while responsive to technol-

178

Figure 1.3: Open Water Data Information Architecture (OWIA) framework.

¹⁷⁹ ogy innovation and risk minimization (i.e, cost, schedule, technical and operational) over its lifetime.

The approach is to follow standard system engineering practices [21] that: (1) define stakeholder ob-180 jectives and, from these, (2) enumerate functional requirements in terms of functional components and 181 major interfaces both of which are implementation-independent, and (3) enumerate technical requirements 182 which specify fundamental technical features such as network transfer rates, storage capacities, reliability, 183 maintainability and availability (RMA), interface dependencies and contingencies and similar quantitative 184 or qualitative requirements at a level of specificity (or abstraction) that is more detailed than the functional 185 requirements on which they are based. It is also designed to present an initial evaluation of some of the 186 obvious design trade-studies to explicate and focus on the key risk areas related to technical, schedule, cost 187 and operational risks. 188

This is an interative and recursive, hierarchical design approach (Figure ??) which prioritizes Stake-189 holder Objectives, Functional Requirements, and Technical Requirements respectively and cross-correlates 190 them to each other via a traceability matrices (Section ??) to ensure that there are no widows or orphans 191 in the sense that there are no unsupported Objectives or Functional Requirements (i.e., widows) as well as 192 no lower-level design features that are not specified in the Functional Requirements (i.e., orphans). As a 193 development methodology, the system engineering method used here is sometimes contrasted with the agile 194 development method. Every methodology has pros and cons and the reason we use this approach for the 195 OWIA is because we already know a great deal about what is needed to improve access-to and reuse-of 196

the collective set of water resource data and the OWIA focus is on the data content. This is not primarily a process of discovery and prototyping of software applications. For a broader discussion of the pros and cons of alternative software development approaches, the reader is encouraged to consider the discussions provided in [18] and [21].

Finally, some historical perspective is helpful. This document is meant to integrate the thinking on 201 water resource information broadly and digital data about water resources specifically. The OWIA concept 202 developed independently of the AB1755 legislation [1][19] that is currently, as of this writing, driving 203 many efforts across the State of California to comply with its mandates and schedule. Fortuitously, the 204 development of the OWIA and the activation of AB1755-related efforts overlap strongly such that AB1755 205 requirements are a subset of the broader OWIA requirements. The implementation of the OWIA will satisfy 206 the requirements of AB1755 and support the Sustainable Groundwater Management Act (SGMA) in such a 207 way that we can treat AB1755 as an OWIA use-case as described in Appendix ??. The OWIA concept is a 208 reflection and integration of a wide range of on-going efforts especially those in the UC WATER Security and 209 Sustainability Research Initiative and CITRIS [7], California Council on Science and Technology (CCST), 210 the Center for Western Weather and Water Extremes (CW3E)[25], the San Diego Supercomputer Center 211 (SDSC) [3, 14, 10, 16, 13, 26, 23, 12, 20, 4, 8, 24, 15, 5, 2, 11, 17] and the UC Santa Barbara Bren School. 212 We expect to grow this community to include private California universities, national laboratories and private 213 sector partners as we go. 214

1.2 Overview of Standard Operating Procedure (SOP) Processing Work flow

This document is the Open Water Information Architecture (OWIA) Standard Operating Procedures (SOPs) document. It describes the procedures developed for the quality control and publication of data related to water resources but it is not limited to that application alone and reflects a more general approach that has been developed and tested over forty year[9, 10, 15, 14, 13, 12]. This report is based both on the mandates of AB1755 and the Open Water Information Architecture (OWIA) System Requirements Document (SRD)[22].

This document is intended as something of a Progammer's Guide to provide examples of the processing steps and coding examples for use in producing OWIA Level 1 data from non-OWIA Level 0 data. The definitions of these levels can be found in [22].

Figure 1.4 illustrates the workflow associated with the OWIA quality control and data publication procedures. Table 1.1 summarizes the standard operating procedures in terms of the major purpose of each step and the typical types of output resulting from each step.

Figure 1.4: Operational workflow for quality control and data publication. Groundwater data is the application example in this figure.

1.3 Related Procedural Examples from Software Development

230 FFMPEG

March 19, 2020

Table 1.1: Overview of standard operating procedures (SOPs) and categorization into quality
control (QC), data publication (DP) and analysis (AN) procedures.

Procedure Type	Name	Purpose	Results
Quality Control	QC-1000	Transform to interoperable format and filetype. Verify accuracy of Level 0 to Level 1 Interoperability Transformation for Water Balance Data.	Run QC-1000.R and then manually inspect the results to cross-check the initial Level 1 output data against its Level 0 source for accuracy.
	QC-2000	Perform standardization with range-checking, outlier and anomaly detection. Verify compliance with controlled vocabulary, units of measure, geospatial projection.	QC-2000.R, manual cross-checking.
	QC-3000	Conduct integration verification if producing Level 2 datasets.	QC-3000.R, manual cross-checking.
Data Publication	DP-1000	 Prepare metadata and data package for publication. Obtain digital object identifier and finalize processing. Populate archive and catalogue with metadata and data respectively. 	Various methods per Technical Working Group.
Data Distribution	API-1000	(1) Application programming interfaces to down- stream use-cases.	Various methods per Technical Working Group.
Analysis	AN-1000	Produce the figures (1,2,,n) and tables (1,2,,n) necessary.	AN-1000.R

²³¹ Chapter 2

Standard Operating Procedures (SOPs)

233 2.1 Groundwater Level Data Reporting by GSA

234 2.1.1 Use-case Definition

Use Case (SOP)

Objective: This use-case was defined at the 24-25 OWIA Workshop for the purpose of proving-out
 the concept of using a messaging service to streamline the reporting burden on a GSA end-user in
 reporting groundwater levels

238 2. Participants: Eric Averett, David Harris, John Helly, Frank Loge, Tara Moran.

Integrated Products (e.g. GE Maps)

Figure 2.1: Testbed implementation.

239 2.1.2 Technical Requirements

240 2.1.2.1 Public Key Authentication and Content Encryption

This use-case will employ Public Key Authentication and Content Encryption as a means of authenticating,
 credentialing and securing the message and its contents.

243 2.1.3 Implementation

- Using munpack to unpack MIME attachments into files. Works with *.csv files but have not gotten it to work with PDF files.
- 246
 2. Mail to owia-100@owia.sdsc.edu then run munpack on mbox. Need to copy to temp directory first
 and do something with extraneous message components.

248 2.1.4 Action Items

- 1. JH: Stand-up OWIA server with (a) Publication, (b) Messaging, (c) Standardized Froms Library
- 250 2. EA, JH, TM: Define form fields and contents.
- 3. JH, FL: Define an API for the SRCE server.
- 4. JH, DH: Define an API for the opendata.ca.gov server.
- 5. JH, ???: Define and API for the SGMA portal server.

254 2.2 Water Balance Automation

Water balance is approached by (1) collecting the data entry spreadsheets from each regional office, (2) converting them to *.csv files according to a set of rules, (3) processing them into a controlled vocabulary and parameterization, (4) computing a set of equations based on the controlled vocabulary and parameterization, and then (5) summarizing the results at the DAUCO, HR, PA and ST levels of aggregation after apply adjustments at each spatial scale to account for water re-use at a given scale.

260 2.2.1 Contributors

These SOPs were developed jointly by Brad Arnold, Glenn Bergquist, Dona Calder, Abby Carevic, Tito
Cervantes, Dong Chen, James Common, Matt Correa, Gary Darling, Siran Erysian, Steve Ewert, Robert
Fastenau, Todd Flackus, Francisco Guzman, Jason Harbaugh, Scott Hayes, John Helly, Todd Hillaire, Salma
Kibrya, Jennifer Kofoid, Kelly Lawler, Michael McGinnis, Salomon Miranda, Lew Moeller, Chris Montoya,
Mohammed Mostafavi, Morteza Orang, Toni Pezzetti, Lida Pirjaberi, Mark Rivera, Jessica Salinas Brown,
Michael Serna, Gholam Shakouri, Paul Shipman, Jeff Smith, Evelyn Tipton, Lauren Wacker, Paul Wells,
Muffet Wilkerson, and Courtney Wilson.

268 2.2.2 Governing Equations

The general form of the governing equations are linear sums (Eq.??). However, there are two sets of equations: two for water use and two for water supply, that are applied sequentially as shown in Figure 2.5. The water use equations (Listings ??, ??) computes quantities at the DAUCO-level for parameters that are computed from the Level 1 data for each of the sectors: (1) agriculture, (2) urban, (3) managed wetlands, (4) required in-stream flows, (5) wild and scenic rivers. The second set of equations (Listings ??, ??) computes adjustments in the return flows at the three other spatial scales: state (ST), hydrologic region (HR), and planning areas (PA).

276 2.2.3 Computer Configuration

²⁷⁷ The software tools used in executing this procedure can vary depending on which operating system you are

- using and what your preferred manner of working is. Here is a reference set that has been used successfully.
- 279 (1) rsync: transfer files between computer systems.
- 280 (2) ssh: login to remote computers.
- 281 (3) cygwin: provide a Linux-like environment on Windows operating systems.
- 282 (4) Qgis: provide GIS capabilities.
- 283 (5) LaTex: provide scriptable document preparation.
- (6) R: statistical computing software to manipulate data, generate figures, tables, and statistical analyses.

285 2.2.4 Preparing the Directory Layout

The directory structure should be organized as shown in Figure 2.2. The important points to notice are the relative nature of the directories with respect to the PROJECT_HOME directory, the notion of DATA_INPUT_*,

288 DOCUMENT_*, and specific output directories such as WADE_* for particular output products.

```
options("digits"=4)
22
23
      options(scipen=0)
24
25
     # -----
26
      # Set directories
27
      # ===
      setwd("/Users/hellyj/Archive-local/Project-OWIA-WaterBalance-src/R")
28
29
      #
     PROJECT_HOME = '/Users/hellyj/Archive-local'
SOURCE_HOME = paste(PROJECT_HOME,'/Project-OWIA-WaterBalance-src/R', sep='')
SOURCE_FILE = paste(SOURCE_HOME,'/DWR-QAQC-Verification-300-Modular.R', sep='')
DATA_INPUT_HOME = paste(PROJECT_HOME,'/Project-OWIA-WaterBalance-Data-Local', sep='')
DATA_OUTPUT_HOME = DATA_INPUT_HOME
DOCUMENT_HOME = paste(PROJECT_HOME,'/Project-OWIA-WaterBalance-Documentation/Report-2009', sep='')
#
      PROJECT HOME
                                                = '/Users/hellyj/Archive-local'
30
31
32
33
34
35
36
     DATA_INPUT_SUPPLY = paste(DATA_INPUT_HOME,'/level2/2010/DWR-2010-Master-Supply.csv',sep='')
DATA_INPUT_DEMAND = paste(DATA_INPUT_HOME,'/level2/2010/DWR-2010-Master-Demand.csv',sep='')
DATA_INPUT_ENVIROMENTAL = paste(DATA_INPUT_HOME,'/level1/2010/State-Level-Environmental-Data-Merged.csv', sep='')
37
38
39
40
      #
DOCUMENT_FIGURES = paste(DOCUMENT_HOME,'/Figures/',sep='')
DOCUMENT_TABLES = paste(DOCUMENT_HOME,'/Tables',sep='')
41
42
43
      WADE_OUTPUT_SUPPLY
                                                 = paste(DATA_OUTPUT_HOME,'/2010/WADE-DWR-2010-Master-Supply-Tabulated.csv',sep='')
= paste(DATA_OUTPUT_HOME,'/2010/WADE-DWR-2010-Master-Use-Tabulated.csv',sep='')
44
      WADE_OUTPUT_USE
45
46
```

Figure 2.2: Example directory organization. Note that the organization has been factored so that the paths are relative to the PROJECT_HOME which would typically change from computer to computer.

MFS-Desktop:~/Archive-local/Project-OWIA-WaterBalance-Data-Local>tree


```
MFS-Desktop:~/Archive-local/Project-OWIA-WaterBalance-Data-Local>
```

Figure 2.3: Tree diagram of data directory corresponding to the directory layout in Figure 2.2

Figure 2.4: Quality control workflow for water balance automation. For this problem, regional data were integrated into a Level 2 (multiple Level 1 datasets) before quality control was applied to enable anomaly detection across the state-level dataset.

289 2.2.5 GR-1000: Procedure for Extracting Hydrologic Region, Planning Area and DAUCO 290 Data with Georeferencing from DWR Shape Files

- 1. Load shape file into Qgis as vector layer and export as csv file.
- 292 2. Under Vector menu, use Geometry Tools to computer a new layer with polygon centroids in it.
- 3. Open the Attribute Table and then the Field Calculator. Select Geometry and add fields for \$y and
- \$x. Set field attributes to decimal and 15.3 precision since we are working in EPSG:3310, state plane
 coordinates and these are eastings and northings in meters.
- ²⁹⁶ 4. Export the attribute table as *.csv and edit it in a spreadsheet.
- 297 (a) Remove rows for islands.
 - (b) Remove columns with comma-separated content (i.e., FIPS, Counties).
 - (c) Save it with *-Cleaned.csv in the filename using Windows comma-separated format.
- 5. Run it through the reproject.bash script to generate Longitude and Latitude values and recombine with the rest of the Attribute table using the spreadsheet.

2.2.6 QC-1000: Procedure for Transforming Spreadsheets to Comma-separated Value (*.csv) Files

1. Open level 0 spreadsheet in spreadsheet program (e.g, Excel, Open-Office, Libre-Office)

298

299

- 2. Save as level 1 spreadsheet in *.csv format.
- 306 3. Close spreadsheet and re-open using *.csv file (removes formatting).
- 307 4. Perform frequent saves.
- 308 5. Trim off right-hand columns.
- 6. Trim off top rows down to the DAU XXXXX headings.
- 310 7. Trim off bottom rows after Water Portfolio rows.
- 8. Convert the column with alpha-numeric labels to be all text.
- 9. Delete any remaining blank columns.
- 10. Add **CategoryA** column and populate with the sector labels (e.g., Agriculture, Urban).
- 11. Add **CategoryB** and **CategoryC** labels to column headings.
- 315 12. Remove any redundant or blank rows.
- 13. Edit the DAU XXXXX column headings to be DAUXXXXX (no space).
- 14. Edit *Wild & Scenic* to be *Wild and Scenic*.
- 15. Format all numeric cells to be floating point numbers without commas.
- 319 16. Verify the file contents using an ASCII editor.
- 17. Rows that have *Totals* will be systematically removed using R script.

Figure 2.5: Overview of geospatial metadata extraction (GS), quality control (QC), configuration management and change control (CM), data publication (DP) and application programming interfaces (API) for water balance data.

SOP	Processing Sequence	Verification Products
QC-1000	 Obtain Level 0 (L0) data and establish project directory structure using a file-naming convention that uniquely identifies the source of the data, when it is obtained and what it is. Convert input Level 0 (L0) data into an intermediate Level 1 (L1) interoperable format. This may be done programmatically or by manual editing. Merge L0 data with geospatial metadata from State GIS database. Need authoritative, standard source reference here. Apply controlled vocabulary for aggregation categories and parameter names and units. Verify transformation from L0 to L1 did not change values of parameters by visual inspection. Perform range check, anomaly detection and characterization table. Standardize nomenclature using controlled vocabulary. Write out L1 data using filename following this format: CA-DWR-WaterBalance-QC-1000-2011-2015-Standard 	 (i) Cross-check tabulation, scatterplots, histograms. (ii) Verify transformation from L0 to L1 did not change values of parameters. (iii) Perform range check and anomaly detection action item list. (iv) Tabulation of category vocabulary and parameter names.
QC-2300	(1) Obtain Level 0 (L0) data and establish project directory structure using a file-naming convention that uniquely identifies the source of the data, when it is obtained and what it is.	(i) Cross-check tabulation, scatterplots, histograms.(ii) Establish new reports if desired based on the new standardization to con- trolled vocabulary.
QC-2500	(1) Obtain Level 0 (L0) data and establish project directory structure using a file-naming convention that uniquely identifies the source of the data, when it is obtained and what it is.	 (i) Cross-check tabulation, scatterplots, histograms. (ii) Establish new reports if desired based on the new standardization to con- trolled vocabulary.

Table 2.1: SOPs applied to water balance data with verification products described.

OWIA Standard Operating Procedures

QC-2400	(1) Obtain Level 0 (L0) data and establish project directory structure using a file-naming convention that uniquely identifies the source of the data, when it is obtained and what it is.	(i) Cross-check tabulation, scatterplots, histograms.(ii) Establish new reports if desired based on the new standardization to controlled vocabulary.
QC-2600	(1) Obtain Level 0 (L0) data and establish project directory structure using a file-naming convention that uniquely identifies the source of the data, when it is obtained and what it is.	(i) Cross-check tabulation, scatterplots, histograms.(ii) Establish new reports if desired based on the new standardization to con- trolled vocabulary.
DP-1000	 Copy data to the data publication platform source directory. Initialize the metadata generation configuration file. Run the Digital Library System Run the EZID digital object identifier generator. Edit metadata and filenaming to include the newly produced DOI. Archive the re-packaged data in the published directory. 	(i) Verify DOI against EZID catalogue.(ii) Verify access to published data and metadata in the archive.
AN-1000	(1) Run scripts for table and figure generation.	 See WaDE Node for California System Description Document for verification product examples.

321 2.2.6.1 API-1000: WaDE Application Programming Interface

Figure 2.6: Wade SQL Query for PA101-2015.

March 19, 2020

Figure 2.7: Wade SQL Query for PA101-2015

322 2.3 Water District Reporting Cost Reduction

- 323 1. Metropolitan Water District
- 324 2. Moulton-Nigel Water District
- 325 3. Peter Brostrom / DWR / Water Use Efficiency / SIMIS / Consumptive Use / Urban, Ag Water Mgmt Plan

326 **2.4 Water Budget**

- 327 2.5 Water Quality
- 328 2.6 Environment

Chapter 3 329

330

Numerical Methods

Analysis of Uncertainty 3.1 331

Guidance for the analysis of uncertainty is gleaned from [?, ?] and [6]. 332

3.2 **Accuracy and Precision** 333

3.2.1 **Significant Digits** 334

335 There are three rules on determining how many significant figures there are in a number [?]:

- 1. Non-zero digits are always significant. 336 337
 - 2. Any zeros between two significant digits are significant.
- 3. A final zero or trailing zeros, in the decimal portion only, are significant. 338

339 All numbers are based upon measurements except for a very few that are defined and all measurements are uncertain, we must only use those 340 numbers that are meaningful.

Propagation of Uncertainty in Calculations 3.3 341

$$In = A \pm \alpha \tag{3.1}$$

$$Out = B \pm \beta \tag{3.2}$$

342 343

$$et = (A - B) \pm \sqrt{\alpha^2 \pm (\alpha\beta) + \beta^2}$$
(3.3)

Uncertainty in Estimates from Numerical Models 3.4 344

N

- 3.4.1 **Verification and Validation** 345
- **Irreproducible Results Across Computing Platforms** 3.4.1.1 346
- 3.4.2 **Statistics from Ensembles** 347

Chapter 4

Testbed Description

350 4.1 Introduction

The AB1755 testbed is meant to be an inter-organizational demonstration project to provide a set of interacting data nodes compliant with the OWIA standards and conventions specified in the SRD. The interactions will be those necessary to implement the IOC use-cases specified in Table 4.1.

4.2 Concept of Operations

The concept of operations for the testbed is depicted in Figure 1.2. Illustration of the OWIA federation concept-of-operations with a triumvirate

355 governance structure of general partners (GP) supported by interacting with a stakeholder working group (SWG) and a technical working group

356 (TWG). The federation is comprised of dedicated OWIA system implementations to enable individual data providers to independently integrate the

OWIA into their existing operations. Shared OWIA system implementations provide the flexibility for the harvesting non-compliant data sources

358 without insisting that the data producers be OWIA-compliant.

359 4.3 Project Management Plan

The project management plan (PMP) implements the project charter listed below. The project lead is Gary Darling. He is supported by the OWIA Technical Working Group and the IOC Data Node Operators.

362 4.3.1 Project Charter

The project charter is a DWR management tool with fields populated by the information contained below.

364 4.3.1.1 Objective

The objective of the testbed is to demonstrate the ability of OWIA-compliant data nodes to realize the mandates of AB1755. The demonstration will be to instantiate a sufficient set of OWIA data nodes to implement the IOC use-cases and maintain the SRD and SOP documents to reflect the results.

368 4.3.1.2 Scope

- 369 (1) In Scope:
- 370 (1) SOPs, SRD
- 371 (2) IOC Use-case implementations
- 372 (3) Data node design descriptions (as examples, not prescriptions)
- 373 (2) Out of Scope:
- (1) Design of Testbed Data Nodes. This is the responsibility of the data node operators.

4.3.1.3 Deliverables 375

- (1) IOC Use-case implementations 376
- 377 (2) SOP and SRD updates
- (3) Data node design descriptions (as examples, not prescriptions) 378

4.3.1.4 Schedule 379

Task or Milestone		2018	3						20	19										
	10	11	12	1	2	S	4	5	6	7	8	9	10	11	12					
IOC																				
Kickoff	X																			
Preliminary Design Review				Χ																
Interim Demonstration							Χ													
Final Design Review										Χ										
Final Demonstration													Χ							

Figure 4.1: Preliminary schedule.

4.3.2 **Governance Structure** 380

- The testbed governance structure is depicted in Figure ??. 381
- 1. General Partners (GP): Project manager acting. 382
- 383 2. Technical Working Group (TWG): As current.
- 3. Stakeholder Working Group (SWG): Represented by stakeholder use cases document. 384

4.3.3 **Technical Baseline** 385

1. System Requirements (SRD): Completed draft of System Requirements Document (SRD) Technical Requirements Chapter. 386

2. Stakeholder Use Cases: two (2) families of Use Cases from the CLEE report (https://www.law.berkeley.edu/wp-content/ 387 uploads/2018/01/DFWD-Use-Cases.pdf). 388

- 389 (a) Input: Family A: use cases 1, 4, 17 and 20
- (b) Input: Family B: use cases 10 and 19 390
 - (c) Output: Defined set of figures, tables and analyses required to support these Families.
- 391 3. Node Designs: One or more candidate data node• designs for implementation based on the requirements baseline, 392

4.3.3.1 **Initial Operating Capability (IOC) Definition** 393

Full Operating Capability (FOC) Definition 4.3.3.2 394

395 TBD

Measures of Success 4.3.4 396

The role of measures of success is illustrated in Figure 1.3 and defined for this project in Table 4.1. 397

Р	roblem Statem	ent		Methodology	Measure of Success		
Use-case	Domain	Sectors	Data Node(s)	Node(s) Input Data SOPs Source		Output Information Products	
Water Balance	Califormia WY2010- 2015	All	CCA, Regional Offices, CKAN, WaDE	Regional Office Spreadsheets	QC-1000,2000,3000 series	Water Plan Document Elements + Published Data	
	San Diego Urban		CCA, CKAN	DWR UWMP Tables + TBD	QC-1000,2000,3000 series	UWMP Document Elements + Published Data	
Water Budget	Tulare Lake Agriculture, Environmental Central Coast Agriculture, Environmental		CCA, LBNL, NASA	DWR Appendix A, + TBD	QC-1000,2000,3000 series	Water Budget Example + Published Data	
			CCA, LBNL, NASA	DWR Appendix A, + TBD	QC-1000,2000,3000 series	Water Budget Example + Published Data	
Water Quality	San Joaquin River	Agriculture	CEDEN	CEDEN Data Templates	QC-1000,2000,3000 series	Published data in association with use-case	
Water Quality(Use-case 8, Environmental)	Regional Water Board 1, 2, 5	Environmental	CWMW, LBNL	EcoAtlas, CIWQS, CRAM, USACOE	QC-1000,2000,3000 series	Compliance Reports for 401 and 404 programs + published data	

Table 4.1: IOC definition regarding problem definition, methodology and measures of success.

398 4.4 Deliverables Details

399 4.4.1 Use-case Implementations

400 4.4.1.1 Water Balance

Figure 4.2: Workflow for California Plan WY2010-2015 example.

401 **4.4.1.1.1 WaDE Integration: WY2010-2015**

		Year 2011			2	012				2013				2014				2015			
		CategoryE			ĉ	ategoryE				CategoryE				CategoryE				CategoryE			
		AWU	DEP	NW1	NW2 A	WU	DEP	NW1	NW2	AWU	DEP	NW1	NW2	AWU	DEP	NW1	NW2	AWU	DEP 1	W1	NW2
HR NAME	CategoryA	KAcreFt	KAcreFt	KACreFt	KACreFt K	AcreFt	KACreFt	KACreFt	KAcreFt	KACreFt	KAcreFt	KACreFt sum	KACreFt	KAcreFt	KACreFt	KACreFt sum	KACreFt I	KAcreFt sum	KACreFt I	KAcreFt	KACreFt
Central Coast	Agriculture	922.0	818.4	818.4	818.4	1012.4	902.3	902.3	902.3	1258.9	1088.2	1088.2	1088.2	1269.6	1033.6	1033.6	1033.6	1088.4	975.2	975.2	975.2
	Instream Flow Requirements	25.4	0.0	0.0	0.0	25.2	0.0	0.0	0.0	24.5	0.0	0.0	0.0	12.0	0.0	0.0	0.0	13.2	0.0	0.0	0.0
	Managed Wetlands	0.4	0.4	0.4	0.4	0.0	0.0	0.0	0.0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	Urban	254.3	141.6	141.7	141.6	276.9	164.0	164.0	164.0	284.2	161.5	162.3	161.5	277.1	171.3	171.3	171.3	244.9	137.5	137.8	137.5
	Wild and Scenic River	154.8	0.0	0.0	0.0	31.3	30.1	30.1	30.1	43.4	0.0	0.0	0.0	13.4	13.2	13.2	13.2	28.7	0.0	0.0	0.0
Colored Direct	All	1356.9	960.4	960.5	960.4	1345.8	1096.4	1096.4	1096.4	1611.4	1250.1	1250.9	1250.1	1572.5	1218.5	1218.5	1218.5	1375.6	1113.1	1113.4	1113.1
Colorado Kiver	Agriculture Instream Flow Requirements	3637.4	3150.1	3227.0	3227.0	4217.1	3664.6	3/39.2	3739.2	4616.2	3856.5	4052.4	4052.4	4/50.0	3963.0	41/6.3	41/6.3	3816.4	3508.9	3380.7	3380.7
	Managed Wetlands	44.4	44.4	44.4	44.4	44.4	44.4	44.4	44.4	30.3	30.3	30.3	30.3	45.2	45.2	45.2	45.2	44.5	44.5	44.5	44.5
	Required Delta Outflow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Urban Wild and Econic River	476.5	145.7	147.2	147.2	590.9	204.3	206.3	206.3	338.Z	203.1	205.0	205.0	302.3	195.1	198.0	198.0	269.1	177.6	179.9	179.9
	All	4158.3	3340.2	3418.6	3418.6	4852.4	3913.3	3989.9	3989.9	4984.7	4089.9	4287.7	4287.7	5097.5	4203.3	4419.5	4419.5	4130.0	3531.0	3605.1	3605.1
North Coast	Agriculture	732.2	524.9	621.0	621.0	794.6	657.8	700.2	700.2	782.3	661.8	686.5	686.5	771.3	651.5	672.6	672.6	729.2	614.3	636.5	636.5
	Instream Flow Requirements	1816.6	1729.6	1729.6	1729.6	1612.5	1506.4	1506.4	1506.4	1450.4	1379.1	1379.1	1379.1	1256.8	1225.3	1225.3	1225.3	1258.9	1222.6	1222.6	1222.6
	Managed WetLands Required Delta Outflow	186.9	138.9	180.9	180.9	203.9	146.0	0.0	172.4	192.0	124.6	140.9	140.9	131.0	83.7	98.5	98.5	0.0	/6.4 0.0	96.8	96.8
	Urban	139.1	64.9	64.9	64.9	140.4	65.0	65.2	65.2	148.8	73.2	73.2	73.2	136.7	71.2	71.4	71.4	125.0	65.7	65.7	65.7
	Wild and Scenic River	23250.6	23250.6	23250.6	23250.6 1	5692.8	15692.8	15692.8	15692.8	12873.2	12873.2	12873.2	12873.2	7824.6	7824.6	7824.6	7824.6	11650.6	11650.6	11650.6	11650.6
North Labortan	All Aggi culture	26125.4	25/08.9	25847.0	25847.01	321 0	18068.0	18137.0	18137.0	353 6	201 1	201 7	301 7	10120.4 362 A	9856.3 306.4	305 0	9892.4	202 1	240.2	249.7	249.7
Not en canonean	Instream Flow Requirements	82.9	82.9	82.9	82.9	84.4	84.4	84.4	84.4	84.5	84.5	84.5	84.5	81.1	81.1	81.1	81.1	40.9	40.9	40.9	40.9
	Managed Wetlands	18.8	10.8	12.5	12.5	22.4	15.2	15.7	15.7	22.0	15.0	15.4	15.4	22.5	15.7	15.9	15.9	21.3	14.4	14.9	14.9
	Required Delta Outflow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Wild and Scenic River	470.8	124.9	124.9	124.9	129.3	37.4	37.4	37.4	147.6	39.1	39.1	39.1	95.8	27.4	27.4	27.4	93.1	22.7	22.7	22.7
	A11	897.4	480.6	482.7	482.7	599.6	431.9	433.2	433.2	639.1	448.9	449.9	449.9	591.5	438.7	439.4	439.4	473.2	334.9	335.8	335.8
Sacramento River	Agriculture	6594.4	4551.4	5449.3	5449.3	7558.1	5456.8	6241.6	6241.6	7928.2	5745.1	6633.6	6633.6	7166.9	5553.1	6043.2	6043.2	6791.8	5545.6	5852.4	5852.4
	Instream Flow Requirements	5051.9	146.4	2804.6	2804.6	4642.8 637.0	177.9	2813.3	2813.3	4568.8	193.6	2804.6	2804.6	4058.8	202.6	402 9	492.9	5827.6	197.8	398 5	2/16.3
	Required Delta Outflow	7384.5	7384.5	7384.5	7384.5	5295.9	5295.9	5295.9	5295.9	4498.5	4498.5	4498.5	4498.5	3998.7	3998.7	3998.7	3998.7	3709.8	3709.8	3709.8	3709.8
	Urban	920.8	362.3	694.6	694.6	965.5	353.3	731.1	731.1	1004.0	372.8	762.0	762.0	886.8	309.5	669.7	669.7	784.0	226.9	599.2	599.2
	Wild and Scenic River	5458.8 25088.6	0.0	514.9	514.9	2734.4	0.0	177.4	177.4	2436.1	0.0 10910.0	145.5	145.5	1455.6	10062.0	12005 0	72.9	1642.3	0.0	74.4	74.4
San Francisco Bav	Agriculture	114.2	100.1	103.3	100.1	154.2	126.6	133.8	126.6	136.2	118.7	122.1	118.8	146.4	130.3	134.5	130.3	151.0	133.0	136.7	133.0
,	Instream Flow Requirements	21.8	21.8	21.8	21.8	19.9	19.9	19.9	19.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9	12.9
	Managed Wetlands	53.3	53.3	53.3	53.3	60.4	60.4	60.4	60.4	58.3	58.3	58.3	58.3	60.6	60.6	60.6	60.6	59.1	59.1	59.1	59.1
	Urban	1137.3	733.2	737.2	737.2	1193.6	787.2	791.2	791.2	0.0	774.1	778.1	778.1	1169.0	816.5	816.9	816.9	1056.9	757.8	759.6	759.6
	Wild and Scenic River	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A11	1326.6	908.4	915.6	912.4	1428.1	994.1	1005.3	998.1	1413.8	964.0	971.4	968.1	1388.9	1020.3	1024.9	1020.7	1279.9	962.8	968.3	964.6
San Joaquin Kiver	Agriculture Instream Flow Requirements	983 1	6064.0	385 2	385 2	596.4	7263.6	8010.6	171 2	8502.5 569.2	7252.2	167.3	167.3	3457.5	7314.5	121 6	121 6	374 8	90/6.4	121 4	9917.0
	Managed Wetlands	500.6	219.0	500.2	500.2	529.9	250.2	529.5	529.5	533.8	251.9	529.4	529.4	535.6	261.4	531.5	531.5	546.4	241.3	500.2	500.2
	Required Delta Outflow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Urban Wild and Sconic River	647.8	246.1	340.2	340.2	685.1	261.8	395.8	395.8	685.8	267.3	373.9	373.9	654.6	247.2	382.0	382.0	617.4	229.1	310.0	310.0
	All	13747.6	6529.1	10114.7	10114.7 1	1426.7	7775.6	9658.6	9658.6	11383.4	7771.4	9721.5	9721.5	10562.5	7823.1	9473.8	9473.8	12570.4	9546.8	11228.0	11228.0
South Coast	Agriculture	654.9	610.4	610.1	610.4	679.9	634.4	634.9	634.4	985.4	856.3	856.8	856.3	1060.5	920.2	922.0	920.2	690.6	646.4	645.7	646.4
	Instream Flow Requirements	5.7	0.0	0.0	0.0	5.7	0.0	0.0	0.0	5.8	0.0	0.0	0.0	5.8	0.0	0.0	0.0	5.8	0.0	0.0	0.0
	Managea wetlands Required Delta Outflow	33.0	33.0	33.0	33.0	0.0	35.4	35.4	35.4	0.0	31.7	51.7 0.0	51.7	34.0	34.0	34.0	34.0	0.0	0.0	0.0	0.0
	Urban	3530.1	2610.0	2610.3	2610.0	3793.8	2860.0	2859.5	2860.0	3966.5	3015.5	3015.0	3015.5	3992.2	3072.5	3070.7	3072.5	3438.7	2581.5	2582.3	2581.5
	Wild and Scenic River	202.3	0.0	187.7	0.0	27.1	0.0	26.2	0.0	12.3	0.0	11.8	0.0	26.0	0.0	25.6	0.0	12.7	0.0	12.3	0.0
South Labortan	All Agriculture	4426.0	3253.4	286 3	3253.4	4541.9	3529.8	3556.0	3529.8	453 2	3903.5	3915.3	3903.5	5118.5	4026.7	4052.3	4026.7	4178.9	3259.0	284 5	3259.0
Joach Landrean	Instream Flow Requirements	99.0	80.2	80.2	80.2	68.6	49.8	49.8	49.8	73.6	47.9	47.9	47.9	67.3	49.7	49.7	49.7	62.9	45.5	45.5	45.5
	Managed Wetlands	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Required Delta Outflow	0.0	0.0	0.0	0.0	0.0	125.2	0.0	0.0	0.0	0.0	124 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Wild and Scenic River	4.3	0.0	4.3	0.0	0.9	0.0	0.9	0.0	0.8	0.0	0.8	0.0	1.5	0.0	1.5	0.0	1.5	95.0	1.5	0.0
	All	653.6	479.6	483.9	479.6	665.3	483.2	483.9	483.2	755.3	533.8	534.6	533.8	737.6	510.5	512.0	510.5	573.9	423.0	424.5	423.0
Tulare Lake	Agriculture	11616.7	9186.6	9186.6	9186.6 1	2124.1	10341.6	10341.6	10341.6	11659.7	10109.8	10109.9	10109.8	11572.3	10146.3	10145.9	10146.3	11223.3	9897.8	9897.8	9897.8
	Managed Wetlands	0.0 84.8	48.6	0.0 48.6	9.0 48.6	92.8	57.0	57.0	57.0	93.7	0.0 61 0	0.0 61.0	61.0	95.8	63.9	0.0 64.0	63.9	91.8	57.6	57.6	57.6
	Required Delta Outflow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Urban	571.2	194.9	193.5	194.9	599.4	200.8	200.8	200.8	584.5	199.5	199.0	199.5	596.7	203.5	203.0	203.5	468.9	158.1	157.9	158.1
	Wild and Scenic River	3101.1 15373 P	9430 1	9428 7	0.0	650.7 3468.7	0.0	32.8	0.0	524.7	0.0	0.0	0.0	506.4	0.0	0.0	0.0	287.3	0.0	0.0	0.0
	ALL	13313.0	5450.1	3420.1	2430.1 1	.J-700.7	10395.4	+003L.2	+0333.4	12004.3	10310.3	10303.9	10310.3	ac//1.2	10413.7	10415.9	10413.7	LL-07 1.3	10113.3		10113.3

Table 4.2: Information product example for California Plan WY2010-2015 (Working Draft).

402 4.4.1.2 Water Budget

Figure 4.3: Workflow for UWMP use-case with the San Diego County Water Authority example.

403 4.4.1.2.1 South Coast Hydrologic Region: (PA404, DAU12037), San Diego County Water Authority 404 Urban Water Management Plan (UWMP)

- 405 **4.4.1.2.2 Tulare Lake**
- 406 4.4.1.2.3 Central Coast
- 407 4.4.1.3 Water Quality
- 408 4.4.1.4 Environmental
- 409 One or more design alternatives compliant with the *Requirements Baseline* and the *Concept of Operations*.

410 4.4.2 Data Node Descriptions

An *OWIA data node* is the *set of people and the SRD-compliant cyberinfrastructure* used to service a specified set of use-cases by ingesting source data, transforming the data by executing *SOPs* and resulting in *Output Information Products* such as those of Table 4.1 and Figures 4.2, 4.3. The *scope of a Data Node* is bounded by the use-cases that it is responsible for: in whole or in part.

- **4.4.2.1** CKAN
- **4.4.2.2 DKAN**
- **4.4.2.3** California Coastal Atlas (CCA)
- **4.4.3 Document Maintenance**
- **4.4.3.1 SRD**
- **4.4.3.2 SOP**

420 Appendix A

421 Water Balance SOP Example Implementation: QC-1000.R

422	# =====================================		
423	# Filename: QC-1000.R		
424	# Author: John Helly (1	nellyj@ucsd.edu)	
425	# Purpose: Ingest *.csv	files from DWR water bala	nce spreadsheets
ری 426	# =====================================		
9 ₄₂₇	rm(list = ls())		
428	library (ggplot2)		
429	library (plyr)		
430	library (reshape2)		
431	library (tables)		
432	#		
433	graphics.off()		
434	# =====================================		
435	# Set directories		
436	# =====================================		
437	PROJECT_ROOT	= '/Users/hellyj/Archive-l	local '
438	SRC_ROOT	= paste (PROJECT_ROOT,	'/ Project -OWIA-WaterBalance-src /R', sep = '')
439	DATA_INPUT_ROOT	= paste (PROJECT_ROOT,	'/Project-OWIA-WaterBalance-data/level1 ', sep='')
440	DATA_OUTPUT_ROOT	= paste (PROJECT_ROOT,	'/ Project -OWIA-WaterBalance-data/level2', sep='')
441	SPATIAL_METADATA	= paste (DATA_INPUT_ROOT,	'/Spatial-Assignments-Georeferencing.csv', sep='')
442	OUTPUT_STANDARDIZED	= paste (DATA_OUTPUT_ROOT)	, '/CA-DWR-WaterBalance-QC-1000-2011-2015-Standardized.csv', sep=')
443	TABLE_OUTPUT_HOME	= paste (PROJECT_ROOT,	'/ Project –OWIA–WaterBalance – Documentation / Tables ', sep = '')
444	FIGURE_OUTPUT_HOME	= paste (PROJECT_ROOT,	'/ Project –OWIA–WaterBalance – Documentation / Figures ', sep = '')
445	CONTROLLED_VOCABULARY	= paste (PROJECT_ROOT,	'/ Project –OWIA–WaterBalance–data / level0 /CV/CV–100.csv', sep = ')
446	# =====================================		
447	# Metadata		
448	# =====================================		
449	COPYRIGHT = paste ("he	ellyj@ucsd.edu", expression	(copyright), Sys.time())
450	$OUTPUT_HOME = FIGURE_OU$	TPUT_HOME	

```
451 SOURCE_FILE = paste (SRC_ROOT, '/QC-1000.R', sep = '')
```

 $METADATA_01 = paste(SOURCE_FILE, ' / ', COPYRIGHT)$ # _____ **5**455 # _____ 2456 source (paste (SRC_ROOT, '/functions/f_OC_1000_Reshape, R', sep = (1, 1)source (paste (SRC_ROOT, '/ functions / f_Category B.R', Õ457 sep = (, ,))2458 source (paste (SRC_ROOT, '/functions/f_QC_1000_PlotDelta.R', sep = ' ')) source (paste (SRC_ROOT, '/functions/f_QC_1000_Table_100.R', sep = (, ,))459 source (paste (SRC_ROOT, '/ functions / f_OC_1000_Table_200.R', sep = (, ,))460 source (paste (SRC_ROOT, '/ functions / f_QC_1000_PlotDelta_DAU_PA_YEAR.R', sep = ')) 461 source (paste (SRC_ROOT, '/functions/f_ControlledVocabulary, R', sep = (,))462 # ______ 463 # Define data sources and reshape the data 464 # _____ 465 source (paste (SRC_ROOT, '/Input-QC-1000-Level1 - 2015.R', sep = '), echo=FALSE) 466 source (paste (SRC_ROOT, '/Input-QC-1000-Level1-2014.R', sep='), echo=FALSE) 467 source (paste (SRC_ROOT, '/Input-QC-1000-Level1-2013.R', sep = ''), echo=FALSE) 468 source (paste (SRC_ROOT, '/Input-QC-1000-Level1-2012.R', sep='), echo=FALSE) 469 source (paste (SRC_ROOT, '/Input-OC-1000-Level1-2011.R', sep = '), echo=FALSE) 470 source (paste (SRC_ROOT, '/Input-QC-1000-level1 -2010.R', sep='), echo=FALSE) 471 # _____ 472 # 1. Concatenate the data by rows (i.e., rbind) 473 474 # 2. Populate the HR, PA fields from the reference list of [HR, PA, DAU] 475 # 3. Georeference DAUs # 4. Standardize nomenclature **5**476 477 # _____ source (paste (SRC_ROOT, '/Input-OC-1000-Rbind-2015.R', sep=')) 478 source (paste (SRC_ROOT, '/Input-OC-1000-Rbind-2014.R', sep = ')) 479 source (paste (SRC_ROOT, '/Input-QC-1000-Rbind-2013.R', sep=')) 480 481 source (paste (SRC_ROOT, '/Input-OC-1000-Rbind-2012.R', sep = ')) source (paste (SRC_ROOT, '/Input-QC-1000-Rbind - 2011.R', sep = ')) 482 source (paste (SRC_ROOT, '/Input-OC-1000-Rbind-2010.R', sep = ')) 483 Contact: 485 # ______ # Controlled Vocabulary standardization # _____ MASTER = rbind (MASTER_2010, MASTER_2011, MASTER_2012, MASTER_2013, MASTER_2014, MASTER_2015) <u>-</u>488 MASTER = subset (MASTER, CategoryC != "") # Miscoded values of CategoryC (and CategoryA) -489 MASTER = subset (MASTER, DAU != X') He⁴⁹⁰ MASTER\$KAcreFt = as.numeric(MASTER\$KAcreFt) ¹⁴⁹¹ MASTER[is.na(MASTER)] = 0 # Set 'NA' to 0y/hellyj@u # _____ = read.table(SPATIAL_METADATA, sep=',', skip=0,header=TRUE, stringsAsFactors=FALSE) SPATIAL SPATIAL = SPATIAL [, (names(SPATIAL) %in% c('DAU', 'DAU_NAME', 'DAU_COUNTY', 'PA', 'HR_CODE', 'HR_NAME', UC 497 498 'Longitude ', 'Latitude '))] SPATIAL = SPATIAL[order(SPATIAL\$DAU),] SPATIAL_NODUP = SPATIAL[!duplicated(SPATIAL[, o 499 2500 c('DAU', 'DAU_NAME', 'PA', 'HR_CODE', 'HR_NAME', 'Longitude', 'Latitude')

```
M_{arc}^{501}
                     ]),]
      Duplicates = tabular (Factor (DAU) (n=1), data=SPATIAL_NODUP)
₩<sub>503</sub>
     #
504
     # Add missing PA
2505
     #
     MISSING
                       = data.frame('DAU20824', 'Turlock',
                                                             '608', '6',
                                                                              'San Joaquin River', '-999',
                                                                                                            '-999')
O506
2507
     names (MISSING)
                       =
                                  c('DAU',
                                              'DAU_NAME',
                                                              'PA', 'HR_CODE', 'HR_NAME',
                                                                                                'Longitude', 'Latitude')
                       = data.frame('DAU20850', 'Turlock'.
                                                              '608'.'6'.
                                                                              'San Joaquin River', '-999',
      df_DAU20850
                                                                                                            '-999')
  508
      df_DAU20924
                       = data.frame('DAU20924', 'Turlock Lake', '608', '6',
                                                                              'San Joaquin River', '-999',
                                                                                                            '-999')
  509
      df_DAU20950
                       = data.frame('DAU20950', 'Turlock Lake', '608', '6',
                                                                              'San Joaquin River', '-999',
                                                                                                            '-999')
  510
      names(df_DAU20850) = c('DAU'.
                                      'DAU_NAME',
                                                     'PA', 'HR_CODE', 'HR_NAME',
                                                                                        'Longitude', 'Latitude')
  511
                                      'DAU_NAME',
                                                     'PA', 'HR_CODE', 'HR_NAME',
                                                                                        'Longitude', 'Latitude')
      names(df_DAU20924) = c('DAU',
  512
      names (df_DAU20950) = c('DAU',
                                      'DAU_NAME'.
                                                     'PA', 'HR_CODE', 'HR_NAME',
                                                                                        'Longitude', 'Latitude')
  513
  514
      MISSING = rbind (MISSING, df_DAU20850, df_DAU20924, df_DAU20950)
  515
      SPATIAL_NODUP_608 = rbind(SPATIAL_NODUP, MISSING)
  516
      # ______
  517
     MASTER_GC
                                = merge(SPATIAL_NODUP_608, MASTER, by = 'DAU') # Note to eliminate wrong assignments
  518
     #
  519
     MASTER_GC[grep1('Scenic',
                                      MASTER_GC (Category A), ] (Category A = 'Wild and Scenic River')
  520
     MASTER_GC[grep1('Delta',
                                      MASTER_GC$CategoryA), ] $CategoryA = 'Required Delta Outflow'
  521
     MASTER_GC[grep1('Water_Supplies', MASTER_GC$CategoryA),]$CategoryA = 'Water Supplies'
  522
     MASTER_GC[grep1('Instream',
                                      MASTER_GC$CategoryA), ] $CategoryA = 'Instream Flow Requirements'
  523
  524
     MASTER_GC[grep1('Wetlands',
                                      MASTER_GC$CategoryA). ] $CategoryA = 'Managed Wetlands'
      #
<u>-</u>525
  526
     MASTER_GC[grep1('Applied Water', MASTER_GC$CategoryC) &
                                     MASTER_GC$CategoryC ).] CategoryC = Applied Water - Groundwater'
  527
               grepl('Groundwater'
      MASTER_GC$CategoryC = gsub("_", "-",
                                          MASTER_GC$CategoryC)
  528
      MASTER_GC$CategoryC = gsub("::", "-", MASTER_GC$CategoryC)
  529
      MASTER_GC$CategoryC = gsub("Wild &", "Wild and", MASTER_GC$CategoryC)
  530
      #
  531
  532
      #
Contact: 536
      #
       _____
      # Delete computed rows and non-balance CategoryA rows
      #
       _____
     A = subset(MASTER_GC, !grepl('Total',
                                                               CategoryC) &
537
538
                           !grep1('Applied Water Use',
                                                               CategoryC) &
                           !grep1('Net Water Use',
                                                               CategoryC) &
Helly 540
                           ! grepl ('Depletion',
                                                               CategoryC) &
                           !grep1('Conveyance Applied Water Use', CategoryC) &
y/hellyj@j
                           !grep1('Conveyance Net Water Use',
                                                               CategoryC) &
                           !grepl('Conveyance Depletion',
                                                               CategoryC) &
                           !grepl('Urban Waste Water Produced',
                                                               CategoryA) &
                           !grepl('Water Use Totals',
                                                               CategoryA) &
                           !grepl('Portfolio',
                                                               CategoryA) &
UCS0547
                            !grepl('Precipitation',
                                                               CategoryC))
                           _____
       _____
      # Read Controlled Vocabulary
o 548
549
       _____
```

March 551 552 CV = read.table(CONTROLLED_VOCABULARY, sep=',', header=TRUE, stringsAsFactors=FALSE) # A = subset(A, CategoryA != '') # Null values in manual conversion effort 553 A[A\$CategoryA=='Urban' & A\$CategoryB=='15',]\$CategoryB='15a' # QC-2500.R corrections from rollups 2554 $A[A\CategoryA=='Urban'$ & A\$CategoryB == '18',]\$CategoryB = '18a' # QC-2500.R corrections from rollups A[A\$CategoryA=='Managed Wetlands' & A\$CategoryB=='17',]\$CategoryB='17a' # QC-2500.R corrections from rollups **O**555 2556 A[A\$CategoryA=='Managed Wetlands' & A\$CategoryB=='8',]\$CategoryB='8a' # QC-2500.R corrections from rollups A[A\$CategoryA=='Instream Flow Requirements' & A\$CategoryB=='3',]\$CategoryB='3a' # QC-2500.R corrections from rollups 557 558 # C = merge(A, CV, by=c('CategoryA', 'CategoryB')) # Merge in CategoryD based on CV 559 560 C\$CategoryC = C\$CategoryC.y 561 # _____ 562 # Write the data out for subsequent procedures 563 # _____ 564 sep=',',row.names=FALSE, quote=TRUE) write, table (C, OUTPUT_STANDARDIZED, 565 # ______ 566 # Debugging 567 # ______ 568 D = subset(C, DAU == 'DAU33936')569 D\$CategoryABCD = paste(D\$CategoryA,'/', D\$CategoryB,'/', D\$CategoryC, '/', D\$CategoryD) 570 Table_Summary_DAU = tabular (Factor (Year) * (Factor (CategoryABCD)+1) 571 (1 + Factor (HR_NAME) * 572 ⁵⁷³ Factor (PA)) * KAcreFt*sum. data=D)

5574

Tabla	CotogomyD	CatagoryP	Catagory	Catagory
1	AGI	1	Agriculture	Applied water
2	AGI0A	10a	Agriculture	Return Flow to Salt Sink
3	AGIUB	106	Agriculture	Return Flow for Delta Outnow
4	AGIIA	11a	Agriculture	Return Flow to Developed Supply (Other DAUCO within PA)
2	AGIIB	110	Agriculture	Return Flow to Developed Supply (Other PA)
6	AGIIC	llc	Agriculture	Return Flow to Developed Supply (Other Region)
7	AGIID	lld	Agriculture	Return Flow to Carryover Storage for Next Water Year within DAU
8	AG12	12	Agriculture	Return Flows Evaporation and Evapotranspiration
13	AGI7	17	Agriculture	Conveyance Evaporation and ETAW
14	AG18A	18a	Agriculture	Conveyance Return Flow to Oregon
15	AG18B	18b	Agriculture	Conveyance Return Flow to Nevada
16	AG18C	18c	Agriculture	Conveyance Return Flow to Mexico
17	AG18D	18d	Agriculture	Conveyance Deep Percolation to Oregon
18	AG18E	18e	Agriculture	Conveyance Deep Percolation to Nevada
19	AG18F	18f	Agriculture	Conveyance Deep Percolation to Mexico
20	AG19A	19a	Agriculture	Conveyance Return Flows to Salt Sink
21	AG19B	19b	Agriculture	Conveyance Return Flow for Delta Outflow
22	AG2	2	Agriculture	Applied Water - Groundwater Recharge
23	AG20A	20a	Agriculture	Conveyance Return Flow to Developed Supply (Other DAUCO within PA)
24	AG20B	20b	Agriculture	Conveyance Return Flow to Developed Supply (Other PA)
25	AG20C	20c	Agriculture	Conveyance Return Flow to Developed Supply (Other Region)
26	AG21	21	Agriculture	Conveyance Seepage
27	AG22	22	Agriculture	Conveyance Deep Percolation
28	AG23	23	Agriculture	Conveyance Deep Percolation to Salt Sink
33	AG3	3	Agriculture	Evapotranspiration of Applied Water
34	AG4	4	Agriculture	Evaporation and Evapotranspiration of Groundwater Recharge
35	AG5	5	Agriculture	Deep Percolation of Applied Water
36	AG6	6	Agriculture	Deep Percolation of Applied Water to Salt Sink
37	AG7	7	Agriculture	Deep Percolation of Groundwater Recharge
38	AG8	8	Agriculture	Reuse of Return Flows within DAUCO
39	AG9A	9a	Agriculture	Return Flow to Oregon
40	AG9B	9b	Agriculture	Return Flow to Nevada
41	AG9C	9c	Agriculture	Return Flow to Mexico
42	AG9D	9d	Agriculture	Deep Percolation to Oregon
43	AG9E	9e	Agriculture	Deep Percolation to Nevada
44	AG9F	9f	Agriculture	Deep Percolation to Mexico
9	AWUAG	13	Agriculture	Applied Water Use
29	AWUAGC	24	Agriculture	Conveyance Applied Water Use
53	AWUIFR	5	Instream Flow Requirements	Applied Water Use
59	AWUMW	11	Managed Wetlands	Applied Water Use
79	AWUMWC	22	Managed Wetlands	Conveyance Applied Water Use
101	AWURDO	3	Required Delta Outflow	Applied Water Use
129	AWUURB	21	Urban	Applied Water Use
149	AWUURBC	32	Urban	Conveyance Applied Water Use
282	AWUWSR	5	Wild and Scenic River	Applied Water Use
12	DEPAG	16	Agriculture	Depletion
32	DEPAGC	27	Agriculture	Conveyance Depletion
56	DEPIFR	8	Instream Flow Requirements	Depletion
62	DEPMW	14	Managed Wetlands	Depletion
82	DEPMWC	25	Managed Wetlands	Conveyance Depletion
104	DEPRDO	6	Required Delta Outflow	Depletion
132	DEPURB	24	Urban	Depletion
152	DEPURBC	35	Urban	Conveyance Depletion
285	DEPWSR	8	Wild and Scenic River	Depletion
45	IFR1	1	Instream Flow Requirements	Applied Water
46	IFR2	2	Instream Flow Requirements	Reuse of Return Flows within DAUCO
47	IFR3A	3a	Instream Flow Requirements	Return Flow to Salt Sink
48	IFR3B	3h	Instream Flow Requirements	Return Flow to Oregon - Mexico - Nevada
49	IFR3C	3c	Instream Flow Requirements	Return Flow for Delta Outflow
50	IFR4A	4a	Instream Flow Requirements	Return Flow to Developed Supply (Other DAUCO within PA)
51	IFR4R	4b	Instream Flow Requirements	Return Flow to Developed Supply (Other PA)
52	IFR4C	4c	Instream Flow Requirements	Return Flow to Developed Supply (Other Region)
57	MW1	1	Managed Wetlands	Applied Water
58	MW10	10	Managed Wetlands	Return Flows Evaporation and Evapotranspiration
			Beaeuunus	

Table A.1: Input-Table-CV-Parameterization.tex

63	MW15	15	Managed Wetlands	Conveyance Evaporation and ETAW
64	MW16A	16a	Managed Wetlands	Conveyance Return Flow to Oregon
65	MW16B	16b	Managed Wetlands	Conveyance Return Flow to Nevada
66	MW16C	16c	Managed Wetlands	Conveyance Return Flow to Mexico
67	MW16D	16d	Managed Wetlands	Conveyance Deep Percolation to Oregon
68	MW16E	16e	Managed Wetlands	Conveyance Deep Percolation to Nevada
69	MW16F	16f	Managed Wetlands	Conveyance Deep Percolation to Mexico
70	MW17A	17a	Managed Wetlands	Conveyance Return Flows to Salt Sink
71	MW17B	17b	Managed Wetlands	Conveyance Return Flow for Delta Outflow
72	MW18A	18a	Managed Wetlands	Conveyance Return Flow to Developed Supply (Other DAUCO within PA)
73	MW18B	18b	Managed Wetlands	Conveyance Return Flow to Developed Supply (Other PA)
74	MW18C	18c	Managed Wetlands	Conveyance Return Flow to Developed Supply (Other Region)
75	MW19	19	Managed Wetlands	Conveyance Seepage
76	MW2	2	Managed Wetlands	Evapotranspiration of Applied Water
77	MW20	20	Managed Wetlands	Conveyance Deep Percolation
78	MW21	21	Managed Wetlands	Conveyance Deep Percolation to Salt Sink
83	MW3	3	Managed Wetlands	Deep Percolation of Applied Water
84	MW4	4	Managed Wetlands	Deep Percolation of Applied Water to Salt Sink
85	MW5	5	Managed Wetlands	Deep Percolation of Groundwater Recharge
86	MW6	6	Managed Wetlands	Reuse of Return Flows within DAUCO
87	MW/A	7a	Managed Wetlands	Return Flow to Oregon
88	MW/B	76	Managed Wetlands	Return Flow to Nevada
89	MW/C	7c	Managed Wetlands	Return Flow to Mexico
90	MW/D	/d 7	Managed Wetlands	Deep Percolation to Oregon
91	MW/E	/e 7£	Managed Wetlands	Deep Percolation to Nevada
92	MW/F	/1	Managed Wetlands	Deep Percolation to Mexico
93	MW8A	8a 85	Managed Wetlands	Return Flow to Salt Sink Beturn Flow for Dalta Outflow
94	MWOA	80 0a	Managed Watlands	Return Flow to Developed Supply (Other DALICO within DA)
95	MWOR	9a 0b	Managed Wetlands	Return Flow to Developed Supply (Other DAOCO within FA) Return Flow to Developed Supply (Other PA)
97	MW9C	90	Managed Wetlands	Return Flow to Developed Supply (Other Region)
97	MW9D	90 0d	Managed Wetlands	Return Flow to Carryover Storage for Next Water Year within DAU
10	NW1AG	14	Agriculture	Net Water Use (Applied Water - Reuse)
30	NW1AGC	25	Agriculture	Conveyance Net Water Use (Applied Water - Reuse)
54	NW1IFR	6	Instream Flow Requirements	Net Water Use (Applied Water - Reuse)
60	NW1MW	12	Managed Wetlands	Net Water Use (Applied Water - Reuse)
80	NW1MWC	23	Managed Wetlands	Conveyance Net Water Use (Applied Water - Reuse)
102	NW1RDO	4	Required Delta Outflow	Net Water Use (Applied Water - Reuse)
130	NW1URB	22	Urban	Net Water Use (Applied Water - Reuse)
150	NW1URBC	33	Urban	Conveyance Net Water Use (Applied Water - Reuse)
283	NW1WSR	6	Wild and Scenic River	Net Water Use (Applied Water - Reuse)
11	NW2AG	15	Agriculture	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
31	NW2AGC	26	Agriculture	Conveyance Net Water Use (ETAW + Flow/Salt Sink + Outflow)
55	NW2IFR	7	Instream Flow Requirements	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
61	NW2MW	13	Managed Wetlands	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
81	NW2MWC	24	Managed Wetlands	Conveyance Net Water Use (ETAW + Flow/Salt Sink + Outflow)
103	NW2RDO	5	Required Delta Outflow	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
131	NW2URB	23	Urban	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
151	NW2URBC	34	Urban	Conveyance Net Water Use (ETAW + Flow/Salt Sink + Outflow)
284	NW2WSR	7	Wild and Scenic River	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
99	RDO1	1	Required Delta Outflow	Applied Water
100	RDO2	2	Required Delta Outflow	Return Flow for Delta Outflow
159	SPL10A	10a	Water Supplies	Desalination - Urban
160	SPL10B	10b	Water Supplies	Desalination - Instream Flow Requirements
161	SPL10C	10c	Water Supplies	Desalination - Wild and Scenic Flows
162	SPL10D	10d	Water Supplies	Desalination - Required Delta Outflow
163	SPL11A	11a	Water Supplies	Colorado River Deliveries - Agriculture
164	SPLIIB	11b	Water Supplies	Colorado River Deliveries - Managed Wetlands
105	SPLIIC SPLIID	110	Water Supplies	Colorado River Deliveries - Urban
100	SPLIID SDI 11E	11u 11a	water Supplies	Colorado River Deliveries - Instream Flow Requirements
169	SPL 11E	11 0 11f	Water Supplies	Colorado River Deliveries - Pequired Delta Outflow
160	SPI 124	129	Water Supplies	State Water Project Deliveries - Agriculture
170	SPI 12R	12a 12h	Water Supplies	State Water Project Deliveries - Agneed Wetlands
171	SPL12C	120	Water Supplies	State Water Project Deliveries - Urban
172	SPL12D	12d	Water Supplies	State Water Project Deliveries - Instream Flow Requirements
173	SPL12E	12e	Water Supplies	State Water Project Deliveries - Wild and Scenic Flows
174	SPL12F	12f	Water Supplies	State Water Project Deliveries - Required Delta Outflow

175	SPL13A	13a	Water Supplies	Central Valley Project - Base Deliveries - Agriculture
176	SPL13B	13b	Water Supplies	Central Valley Project - Base Deliveries - Managed Wetlands
177	SDL 12C	120	Water Supplies	Control Valley Project Base Deliveries Urban
177	SILIJC	130	water Supplies	Central Valle Differ - Dase Deliveries - Orban
178	SPL13D	13d	Water Supplies	Central Valley Project - Base Deliveries - Instream Flow Requirements
179	SPL13E	13e	Water Supplies	Central Valley Project - Base Deliveries - Wild and Scenic Flows
180	SPI 13F	13f	Water Supplies	Central Valley Project - Base Deliveries - Required Delta Outflow
100	CDI 14A	1.1.	Water Supplies	Central Valley Designet Designet Deliveries Against Deliveries
181	SPL14A	14a	water Supplies	Central valley Project - Project Deliveries - Agriculture
182	SPL14B	14b	Water Supplies	Central Valley Project - Project Deliveries - Managed Wetlands
183	SPL14C	14c	Water Supplies	Central Valley Project - Project Deliveries - Urban
194	SDI 14D	144	Water Supplies	Cantral Vallay Project Project Deliveries Instream Flow Requirements
164	SPL14D	140	water Supplies	Central valley Project - Project Deriveries - Instream Flow Requirements
185	SPL14E	14e	Water Supplies	Central Valley Project - Project Deliveries - Wild and Scenic Flows
186	SPL14F	14f	Water Supplies	Central Valley Project - Project Deliveries - Required Delta Outflow
187	SPI 154	15a	Water Supplies	Other Federal Deliveries - Agriculture
100	ODL 15D	154	Water Supplies	
188	SPL15B	156	Water Supplies	Other Federal Deliveries - Managed Wetlands
189	SPL15C	15c	Water Supplies	Other Federal Deliveries - Urban
190	SPL15D	15d	Water Supplies	Other Federal Deliveries - Instream Flow Requirements
101	SDI 15E	150	Water Supplies	Other Federal Deliveries Wild and Scenic Flows
191	SFLIJE	150	water Supplies	Other Federal Deliveries - white and Scenic Flows
192	SPL15F	151	Water Supplies	Other Federal Deliveries - Required Delta Outflow
193	SPL16A	16a	Water Supplies	Ocean Desalination - Agriculture
194	SPI 16B	16b	Water Supplies	Ocean Desalination - Managed Wetlands
105	CDL 1/C	160	Water Supplies	Occar Desalination Unitaged Wethands
195	SPLIC	100	water Supplies	Ocean Desannation - Orban
196	SPL16D	16d	Water Supplies	Ocean Desalination - Instream Flow Requirements
197	SPL16E	16e	Water Supplies	Ocean Desalination - Wild and Scenic Flows
108	SPI 16F	16f	Water Supplies	Ocean Desalination - Required Delta Outflow
190	SILIUI	101	water Supplies	Ocean Desamation - Required Dena Outriow
199	SPL1/A	17a	Water Supplies	Water from Refineries - Agriculture
200	SPL17B	17b	Water Supplies	Water from Refineries - Managed Wetlands
201	SPI 17C	17c	Water Supplies	Water from Refineries - Urban
201	SDL 17D	174	Water Supplies	Water from Defineries Instreem Flow Dequirements
202	SPL1/D	170	water Supplies	water from Remember - Instream Flow Requirements
203	SPL17E	17e	Water Supplies	Water from Refineries - Wild and Scenic Flows
204	SPL17F	17f	Water Supplies	Water from Refineries - Required Delta Outflow
205	SPI 184	18a	Water Supplies	Water Transfers - Regional - Agriculture
205	CDL 10D	104	Water Supplies	Water Transfers Regional Menered Wetlands
206	SPLI8B	180	water Supplies	water Transfers - Regional - Managed Wetlands
207	SPL18C	18c	Water Supplies	Water Transfers - Regional - Urban
208	SPL18D	18d	Water Supplies	Water Transfers - Regional - Instream Flow Requirements
209	SPI 18F	18e	Water Supplies	Water Transfers - Regional - Wild and Scenic Flows
210	CDL 10E	100	Water Supplies	Water Transfers Regional Densing Delte Outflows
210	SPLI8F	181	water Supplies	water Transfers - Regional - Required Delta Outflow
211	SPL19A	19a	Water Supplies	Inter-basin Water Transfers - Agriculture
212	SPL19B	19b	Water Supplies	Inter-basin Water Transfers - Managed Wetlands
213	SPI 19C	190	Water Supplies	Inter-hasin Water Transfers - Urban
213	SDL 10D	104	Water Supplies	Inter basin Water Transfers - Instances Eleve Description
214	SPLI9D	190	water Supplies	Inter-basin water Transfers - Instream Flow Requirements
215	SPL19E	19e	Water Supplies	Inter-basin Water Transfers - Wild and Scenic Flows
216	SPL19F	19f	Water Supplies	Inter-basin Water Transfers - Required Delta Outflow
217	SPI 1A	1a	Water Supplies	Local Supplies - Agriculture
217	ODL 1D	14	Water Supplies	
218	SPLIB	10	water Supplies	Local Supplies - Managed Wetlands
219	SPL1C	1c	Water Supplies	Local Supplies - Urban
220	SPL1D	1d	Water Supplies	Local Supplies - Instream Flow Requirements
221	SDI 1E	10	Water Supplies	Local Supplies Wild and Scenic Flows
221	SILIE	10	water Supplies	Local Supplies - who and Seeme Hows
222	SPLIF	11	Water Supplies	Local Supplies - Required Delta Outflow
223	SPL23	23	Water Supplies	Total Developed Supply (TDS)
224	SPL24	24	Water Supplies	Total Return Flow and Reuse (TRFR)
225	SDI 25	25	Water Supplies	Total Supply and Datuce (TSD)
225	31 L23	25	water Supplies	Total Suppry and Refuse (TSR)
226	SPL26	26	Water Supplies	Total Reuse of Deep Percolation (TRDP)
227	SPL27	27	Water Supplies	Total Net Supply (TNS)
228	SPL28	28	Water Supplies	Total Reuse (TR)
220	SDL 2A1	201	Water Supplies	Poturn Elow from Other DAUCO within DA Agriculture
229	SFLZAI	201	water Supplies	Return Flow from Other DAUCO within FA - Agriculture
230	SPL2A2	2a2	Water Supplies	Return Flow from Other DAUCO within PA - Managed Wetlands
231	SPL2A3	2a3	Water Supplies	Return Flow from Other DAUCO within PA - Urban
232	SPL2A4	2a4	Water Supplies	Return Flow from Other DAUCO within PA - Instream Flow Requirements
222	SPI 245	295	Water Supplies	Return Flow from Other DALICO within DA Wild and Soonia Flows
233	SFL2AJ	2a5	water Supplies	Return Flow noin Other DAUCO within PA - who and Scenic Flows
234	SPL2A6	2a6	Water Supplies	Return Flow from Other DAUCO within PA - Required Delta Outflow
235	SPL2B1	2b1	Water Supplies	Return Flow from Other PA - Agriculture
236	SPL2B2	2h2	Water Supplies	Return Flow from Other PA - Managed Wetlands
227	SDI 2D2	262	Weter Supplies	Paturn Flow from Other DA Urban
231	SFL2D3	203	water Supplies	Return Flow Holli Ouler FA - Ulball
238	SPL2B4	2b4	Water Supplies	Return Flow from Other PA - Instream Flow Requirements
239	SPL2B5	2b5	Water Supplies	Return Flow from Other PA - Wild and Scenic Flows
240	SPL2B6	2b6	Water Supplies	Return Flow from Other PA - Required Delta Outflow
241	SPI 2C1	201	Water Supplies	Paturn Flow from Other Pagion Agriculture
241	SFL2CI	201	water Supplies	Return Flow from Other Region - Agriculture
242	SPL2C2	2c2	water Supplies	Return Flow from Other Region - Managed Wetlands

243	SPL2C3	2c3	Water Supplies	Return Flow from Other Region - Urban
244	SPL2C4	2c4	Water Supplies	Return Flow from Other Region - Instream Flow Requirements
245	SPL2C5	2c5	Water Supplies	Return Flow from Other Region - Wild and Scenic Flows
246	SPL 2C6	200	Water Supplies	Paturn Flow from Other Pagion - Paguired Dalto Outflow
240	SI L2CU	200	Water Supplies	Return Flow from Other Region - Required Dette Control Way A is the
247	SPL2D1	201	water Supplies	Return Flow to Carryover Storage within DAU from Previous w Y - Agriculture
248	SPL2D2	2d2	Water Supplies	Return Flow to Carryover Storage within DAU from Previous WY - Managed Wetlands
249	SPL2D3	2d3	Water Supplies	Return Flow to Carryover Storage within DAU from Previous WY - Urban
250	SPL3A	3a	Water Supplies	Local Imports - Agriculture
251	SDI 3B	3h	Water Supplies	Local Imports Managed Watlands
251	SFLSD	30	water Supplies	Local imports - managed wettands
252	SPL3C	3c	Water Supplies	Local Imports - Urban
253	SPL3D	3d	Water Supplies	Local Imports - Instream Flow Requirements
254	SPL3E	3e	Water Supplies	Local Imports - Wild and Scenic Flows
255	SPL3F	3f	Water Supplies	Local Imports - Required Delta Outflow
256	SDI 4A	40	Water Supplies	Groundwater Extraction Unadjudicated Agriculture
250	SFL4A	4a	water Supplies	Goundwater Extraction - Unadjudicated - Agriculture
257	SPL4B	4b	Water Supplies	Groundwater Extraction - Unadjudicated - Managed Wetlands
258	SPL4C	4c	Water Supplies	Groundwater Extraction - Unadjudicated - Urban
259	SPL4D	4d	Water Supplies	Groundwater Extraction - Unadjudicated - Instream Flow Requirements
260	SPI 4E	4e	Water Supplies	Groundwater Extraction - Unadjudicated - Wild and Scenic Flows
260	SDI 4E	10 4f	Water Supplies	Groundwater Extraction Unadjudicated Paquired Date Outflow
201	SFL4F	41	water Supplies	Goundwater Extraction - Unadjudicated - Keylined Dena Outnow
262	SPL5A	5a	Water Supplies	Groundwater Extraction - Adjudicated - Agriculture
263	SPL5B	5b	Water Supplies	Groundwater Extraction - Adjudicated - Managed Wetlands
264	SPL5C	5c	Water Supplies	Groundwater Extraction - Adjudicated - Urban
265	SPL5D	5d	Water Supplies	Groundwater Extraction - Adjudicated - Instream Flow Requirements
265	SDI 5E	50	Water Supplies	Groundwater Extraction Adjudicated Wild and Scania Flows
200	SPLJE	56	water Supplies	Groundwater Extraction - Adjudicated - wild and Scenic Flows
267	SPL5F	51	Water Supplies	Groundwater Extraction - Adjudicated - Required Delta Outflow
268	SPL6A	6a	Water Supplies	Groundwater Extraction - Banked - Agriculture
269	SPL6B	6b	Water Supplies	Groundwater Extraction - Banked - Managed Wetlands
270	SPL6C	6c	Water Supplies	Groundwater Extraction - Banked - Urban
271	SDI 6D	64	Water Supplies	Groundwater Extraction Banked Instroom Flow Poquirements
271	SFLOD	ou	water Supplies	Gloundwater Extraction - Banked - Instream Flow Requirements
272	SPL6E	6e	Water Supplies	Groundwater Extraction - Banked - Wild and Scenic Flows
273	SPL6F	6f	Water Supplies	Groundwater Extraction - Banked - Required Delta Outflow
105	URB1	1	Urban	Applied Water - Residential - Single Family Interior
106	URB10	10	Urban	Evapotranspiration of Applied Water
107	UDD11	10	Urbon	Evaporation of Appled Water
107	URD12	11		Evaporation and Evaporation of Groundwater Reenarge
108	URB12	12	Urban	Deep Percolation of Applied Water
109	URB13	13	Urban	Deep Percolation of Applied Water to Salt Sink
110	URB14	14	Urban	Deep Percolation of Groundwater Recharge
111	URB15A	15a	Urban	Reuse of Return Flows within DAUCO
112	UDB15B	15b	Urban	Urban Wastewater Pacycling
112	UDD15C	150	Uluhan	Ushan Desiling
115	UKBISC	150	Urban	Urban - Desamation
114	URB16	16	Urban	Evaporation and Evapotranspiration of Wastewater
115	URB17A	17a	Urban	Return Flow to Oregon
116	URB17B	17b	Urban	Return Flow to Nevada
117	URB17C	17c	Urban	Return Flow to Mexico
117	URD17C	170	Luber	
118	UKB1/D	1/d	Urban	Deep Percolation to Oregon
119	URB17E	17e	Urban	Deep Percolation to Nevada
120	URB17F	17f	Urban	Deep Percolation to Mexico
121	URB18A	18a	Urban	Return Flow to Salt Sink
122	URB18B	18h	Urban	Return Flow for Delta Outflow
122	UDD10A	100	Unhan	Detum Flow to Detal order Sumply (Other DALICO within DA)
125	UKDI9A	198	Urban	Return Flow to Developed Supply (Other DAUCO within PA)
124	URB19B	19b	Urban	Return Flow to Developed Supply (Other PA)
125	URB19C	19c	Urban	Return Flow to Developed Supply (Other Region)
126	URB19D	19d	Urban	Return Flow to Carryover Storage for Next Water Year within DAU
127	URB2	2	Urban	Applied Water - Residential - Single Family Exterior
127	UDD20	20	Unhan	Detune Flows Eveneration and Evenetransmithtion
120	UKB20	20	Urban	Return Flows Evaporation and Evaporation
133	URB25	25	Urban	Conveyance Evaporation and ETAW
134	URB26A	26a	Urban	Conveyance Return Flow to Oregon
135	URB26B	26b	Urban	Conveyance Return Flow to Nevada
136	URB26C	26c	Urban	Conveyance Return Flow to Mexico
127	LIDDOC	264	Urban	Conveyance Deen Develation to Oragon
13/	UND20D	200		Conveyance Deep releation to Olegon
138	UKB26E	26e	Urban	Conveyance Deep Percolation to Nevada
139	URB26F	26f	Urban	Conveyance Deep Percolation to Mexico
140	URB27A	27a	Urban	Conveyance Return Flows to Salt Sink
141	URB27B	27h	Urban	Conveyance Return Flow for Delta Outflow
142	LIDB 20 V	280	Urban	Conveyance Deturn Flow to Developed Supply (Other DALICO within DA)
142	UND20A	20a		Conveyance Actum Flow to Developed Suppry (Other DAUCO within PA)
143	URB28B	28b	Urban	Conveyance Return Flow to Developed Supply (Other PA)
144	URB28C	28c	Urban	Conveyance Return Flow to Developed Supply (Other Region)
145	URB29	29	Urban	Conveyance Seepage

146	URB3	3	Urban	Applied Water - Residential - Multi Family Interior
147	URB30	30	Urban	Conveyance Deep Percolation
148	URB31	31	Urban	Conveyance Deep Percolation to Salt Sink
153	URB4	4	Urban	Applied Water - Residential - Multi Family Exterior
154	URB5	5	Urban	Applied Water - Commercial Use
155	URB6	6	Urban	Applied Water - Industrial Use
156	URB7	7	Urban	Applied Water - Urban Large Landscape
157	URB8	8	Urban	Applied Water - Energy Production
158	URB9	9	Urban	Applied Water - Groundwater
274	WSR1	1	Wild and Scenic River	Applied Water
275	WSR2	2	Wild and Scenic River	Reuse of Return Flows within DAUCO
276	WSR3A	3a	Wild and Scenic River	Return Flow to Salt Sink
277	WSR3B	3b	Wild and Scenic River	Return Flow to Oregon - Mexico - Nevada
278	WSR3C	3c	Wild and Scenic River	Return Flow for Delta Outflow
279	WSR4A	4a	Wild and Scenic River	Return Flow to Developed Supply (Other DAUCO within PA)
280	WSR4B	4b	Wild and Scenic River	Return Flow to Developed Supply (Other PA)
281	WSR4C	4c	Wild and Scenic River	Return Flow to Developed Supply (Other Region)
286	WSR5	5	Wild and Scenic Rivers	Applied Water Use
287	WSR6	6	Wild and Scenic Rivers	Net Water Use (Applied Water - Reuse)
288	WSR7	7	Wild and Scenic Rivers	Net Water Use (ETAW + Flow/Salt Sink + Outflow)
289	WSR8	8	Wild and Scenic Rivers	Depletion

575 Appendix B

OWIA Technical Working Group Action Items

- 578 1: Figure for Regulatory framework and operations (Sara)
- 579 2: JH Edit TDD to reflect table changes and provide a revised TDD to Kamyar after TWG review
- 3: Consider for describing vested interests (i.e. public, private, NGO, quasi-governmental) (Gary)
- 581 4: How to implement an SWG (Gary)
- 582 5: How to engage other interested parties (Sara mentions MOUs in other national activities) (Gary)
- 583 6: David H., JH: Data and metadata (schema,..)
- 584 7: Forest, JH: Remote sensing + NASA directions
- 585 8: Paul H, JH: Reconcile, unify Water Balance and Water Budget
- 586 9: UWMP and AGWMP considered as a joint problem in terms of Water Budget use-case (JH)
- 587 10: Regional offices as data nodes? (JH)
- 588 11: Common parameterization and controlled Vocab (Sara)
- 589 12: Re-visit use-cases in smaller conversation (Charu)

590 Appendix C

Application to AB1755

⁵⁹² C.1 Application-AB1755: OWIA application to AB1755 objectives

Identifier	Name	Data Sharing	Documentation	Quality Control	Public Access	Open-source platforms and decision support tools
FR-100-100	Data Acquisition	Х				**
FR-100-110	*-Manual-	Х				
FR-100-120	*-Automated-	Х				
FR-200-100	Quality Control-*-	Х		Х		
FR-200-110	*-Verification-	Х		Х		
FR-200-120	*-*-Documentation	Х	Х	Х		
FR-200-130	*-*-Reproducibility	Х		Х		
FR-200-140	*-*-Data Traceability	Х		Х		
FR-200-150	*-Standardization-	Х	Х	Х		Х
FR-200-160	*-*-File-naming Conventions	Х	Х	Х		Х
FR-200-170	*-Interoperable Transformation-	Х		Х		Х
FR-200-180	*-*-Separation of Data and Computation	Х		Х		Х
FR-200-190	*-*-Data Interoperability	Х	Х	Х		Х
FR-200-200	*-*-Products or Resources	Х		Х		Х
FR-300-100	Publication-*-	Х	Х		Х	
FR-300-110	*-Cross-Referencing-Service-	Х	Х		Х	
FR-300-120	*-*-Assignment of Digital Object Identifiers	Х	Х		Х	
FR-300-130	*-Packaging-	Х			Х	
FR-300-140	*-*-Compression Methods	Х			Х	
FR-300-150	*-*-Archive File Formatting	Х			Х	
FR-300-160	*-Archival-	Х			Х	
FR-300-170	*-*-Open Access Distribution	Х			Х	
FR-400-100	Data Traceability-*-	Х	Х		Х	
FR-400-110	*-Metadata Production-	Х	Х		Х	
FR-400-120	*-Intellectual Property Rights Management-	Х	Х		Х	
FR-400-130	*-Public Law Compliance-	Х	Х		Х	
FR-400-140	*-Licensing-	Х	Х		Х	
FR-400-150	*-Liability-	Х	Х		Х	
FR-400-160	*-Searching-	Х			Х	
FR-400-170	*-*-Cross-referencing System Integration	Х			Х	
FR-400-180	*-*-Search Engine Optimization	Х			Х	
FR-400-190	*-Version Control-	Х	Х			
FR-400-200	*-*-Binary Data	Х	Х			
FR-400-210	*-*-Non-Binary Data	Х	Х			
FR-400-220	*-Anomaly Reporting-	Х	Х			
FR-500-100	System Portability-*-					Х
FR-500-110	*-Backup and Restore-					Х
FR-500-120	*-Platform Portability-					Х
FR-600-100	External Interfaces-*-	Х				Х
FR-600-110	*-Data and Metadata Acquisition-	Х				Х
FR-600-120	*-Data and Metadata Distribution-	Х				Х

OWIA Standard Operating Procedures

Table C.1: Traceability of AB1755 objectives (columns) to OWIA functional requirements (rows).

Glossary

594 **federated** See Federation 13

federation A federation is a group of data providers and users using jointly agreed-upon standards of operation in a collective fashion to ensure the interoperability of the resources they collectively hold and employ. The term may be used, for example, when describing the interoperation of distinct cyberinfrastructure networks with different internal structures. The term may also be used when human groups agree to collectively manage cyberinfrastructure development and operation using commonly held, and managed, requirements, standards and conventions, and operating procedures to ensure the interoperability of distinct cyberinfrastructure resources (cf. Wikipedia Definition).

601 Federation See federation 53

- 602 interoperability The ability of computer systems or software to exchange and make use of data (adapted from the Oxford English Dictionary). 53
- 603 procedures An established or official way of doing something (Oxford English Dictionary). 12, 15, 53

Bibliography

- [1] California Legislature, AB-1755 The Open and Transparent Water Data Act. (2015-2016), Assembly Bill 1755, California Legislature, 2015.
- [2] Dan Cayan and John Helly, <u>The Wireless Watershed at the Santa Margarita Ecological Reserve</u>, Southwest Hydrology September/October
 (2003).
- [3] B. Chadwick, P.F. P.F. Wang, M. Brand, R. Flick, A. Young, W. O'Reilly, P. Bromirski, W. Crampton, R. Guza, J. Helly, T. Nishikawa, S. Boyce, M. Landon, M. Martinez, I. Canner, and B. Leslie, <u>A Methodology for Assessing the Impact of Sea Level Rise on Representative Military Installations in the Southwestern United States</u>
 https://pubs.er.usgs.gov/publication/70178493, Technical Report RC-1703, SPAWAR Systems Center Pacific, 2014.
- [4] CODATA-ICSTI Task Group on Data Citation Standards and Practices, <u>Out of Cite, Out of Mind: The Current State of Practice, Policy, and Technology for the Citat</u>
 Data Science Journal **12** (2013), 1–75.
- [5] B. W. Eakins, S.P. Miller, J. Helly, and B. Zelt, The fully electronic IODP Site Survey Data Bank, Scientific Drilling 2 (2006), 40–42.
- [6] Eugene 615 W. Rice and Roger Β. Baird and Andrew D. Eaton and Lenore S. Clesceri (ed.). Standard Methods for the Examination of Water and Wastewater, vol. 22nd Edition, American Public Health Association, American 616 Water Works Association, Water Environment Federation, 2012. 617
- [7] Steven Glaser, Martha Conklin, and Roger Bales, <u>Building an Intelligent Water Information System American River Prototype</u>, Technical
 report, CITRIS, 2013.
- [8] Kay Gross, Edie Allen, Caroline Bledsoe, Robert Colwell, Paul Dayton, Megan Dethier, John Helly, Robert Holt, Nancy Morin, William
 Michener, Steward T. Pickett, and Susan Stafford, <u>Report of the Committee on the Future of Long-term Ecological Data (FLED)</u>, Tech. report, Ecological Society of America, Washington, D. C., 1995.
- [9] J Helly, Web-based data management for ecological analysis and synthesis, Ecological Society of America, vol. Annual Meeting of the Ecological Society of America, Albuquerque, New Mexico, Ecological Society of America, 1997.
- [10] J. Helly, T. T. Elvins, D. Sutton, D. Martinez, S Miller, S. Pickett, and A. M. Ellison, <u>Controlled Publication of Digital Scientific Data</u>, CACM
 45 (2002), no. 5, 97–101.
- [11] J. J. Helly, <u>Visualization of ecological and environmental data</u>, LTER Network Office, University of New Mexico, Albuquerque, New Mexico, 1998.
- [12] John Helly, New concepts of publication, Nature 393 (1998).
- [13] ______, <u>Digital libraries in hydrology</u>, Hydroinformatics: Data Integrative Approaches in Computation, Analysis, and Modeling (Praveen Kumar, Mike Folk, Momcilo Markus, Jay C Alameda, and Peter Bajcsy, eds.), Taylor and Francis, London, England, 2005, p. 552.
- [14] John Helly and Maggi Kelly, Collaborative Management of Natural Resources in San Diego Bay, Coastal Management 29 (2001), 16.
- [15] John Helly, Hubert Staudigel, and Anthony Koppers, <u>Scalable models of data sharing in Earth sciences</u>, Geochemistry Geophysics Geosystems 4 (2003).
- [16] John J. Helly, Cyberinfrastructure for data authorship, publication and application interoperability, no. 1501928, AGU, AGU, December 2012.
- [17] John J. Helly and Kevin T. Herbinson, <u>Visualization of the salinity plume from a coastal ocean water desalination plant</u>, Water Environment
 Research 66 (1994), no. 5, 753–758.
- 638
 [18]
 ISTQB
 EXAM
 CERTIFICATION,
 What is Agile model advantages, disadvantages and when to use it?,

 639
 http://istqbexamcertification.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it (2018).
- [19] J. Gage Marchini, <u>Connecting the "Drops" of California Water Data: Chapter 506: The Open and Transparent Water Data Act</u>, The University of the Pacific Law Review (2017), 785–799.

- William K. Michener, James W. Brunt, John J. Helly, Thomas B. Kirchner, and Susan G. Stafford, <u>Nongeospatial metadata for the ecological sciences</u>, Ecological Applications 7 (1997), no. 1, 330–242.
- [21] NASA, NASA Systems Engineering Handbook, Tech. Report NASA-SP-2007-6105-Rev-1-Final-31Dec2007, NASA, 2007.
- 645 [22] OWIA Technical Working Group, OWIA System Requirements Document, Report, DWR, 2017.
- Paul F. Uhlir Rappreur, For Attribution Developing Data Attribution and Citation Practices and Standards: Summary of an International Workshop,
 Report ISBN 978-0-309-26728-1, National Acadeies Press, 2012.
- [24] J. Pundsack, R. Belland, D. Broderson, G.C. Fox, J. Dozier, J. Helly, W. Li, P. Morin, M. Parsons, A. Roberts, C. Tweedie, and C. Yang., Report on Workshop on Cyberinfrastructure for Polar Sciences. St. Paul, Minnesota. University of Minnesota Polar Geospatial Center., port, National Science Foundation, 2013.
- [25] F. M. Ralph, K. A. Prather, D. Cayan, J. R. Spackman, P. DeMott, M. Dettinger, C. Fairall, R. Le ung, D. Rosenfeld, S. Rutledge, D. Waliser, A. B. White, J. Cordeira, A. Martin, J. Helly, and J. Intrieri,
 <u>CalWater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S. West Coast Precipitation in a Changing Climate.</u>,
 Bulletin of the American Meteorological Society (2015).
- [26] Hubert Staudigel, John Helly, Anthony A. P. Koppers, Henry F. Shaw, William F. McDonough, Albrecht W. Hofmann, Charles H. Langmuir, Kerstin Lehnert, Baerbel Sarbas, Louis A. Derry, and Alan Zindler, <u>Electronic data publication in geochemistry</u>, Geochem. Geophys. Geosyst.
 4 (2003), no. 3.